EARTH CLIMATE OVER GEOLOGICAL TIME

The present global warming model has a very basic/fatal flaw in that it assumes that the long-term global average temperature has almost always been slightly cooler than present levels, and needs to return to those lower values by reducing atmospheric CO2.The climate chart below displays the departures from the present mean global temperature over the last 4.6 billion years  determined from geological temperature markers over that period. Departures of the temperature curve from the present day average global temperature reference line, reflect the magnitude of the change.  For temperatures the maximum range above the line would be 5-10 degrees. The dashed red line represents the average, long-term, mean global temperature position established over the last several billion years and lies some 3-5 degrees above the present-day global average temperature line of 15 degrees C.


Only very briefly, and only on about 8-10  occasions in the last billion years, (see the red dots in the chart below), has the Earth ever been at the current global average temperature of 15 degrees, considered ideal by science,  based on the arbitrarily assumption that present day conditions represent the ideal global temperature norm.


 Global warming can be clearly seen to be no more than the Earth-Sun dynamic equilibrium trying to re-establish past normal warmer conditions that existed for over the last billion years, almost right up to the present, and to which all life on earth is optimally adapted to. The Earth is not under any existential threat but slowly returning to warmer normal temperature conditions. Warming has not been man-made, atmospheric CO2 plays no significant role,  and no man-made intervention will  make any difference to the climate outcome. 

  

For most of Earth history conditions have been warmer than at present, sometimes warmer and wetter, and sometimes warmer and drier. For more than 95% of all time conditions were warmer, and throughout most of that time there were no permanent polar ice caps. The several glacial periods represent minor disturbances in this long-term equilibrium temperature history of the Earth, due to any number of short cooler episodes in sun activity, massive sun-obscuring global volcanic episodes, periodic changes in Earth tilt, orbit and wobble (Milankovitch cycles), and changes in continental drift configurations affecting ocean & atmospheric circulation patterns etc. 


The Dynamic Steady-State Thermal Equilibrium Climate Model

It can be seen that for over the bulk of four billion years of Earth history, the global mean temperatures have been consistently warmer than at present and for the last 600 million years at least, by up to some 3-5 degrees warmer than at present. This is remarkable temperature control to within 2-3 degrees over an enormous period of time. This is due to, and evidence of, the Sun and Earth maintaining a very powerful stable closed system that has achieved and maintained a powerful dynamic steady-state thermal equilibrium over that period.  A steady-state equilibrium system will always revert to the steady state condition if the equilibrium is disturbed (such as during a global glacial event), and will automatically, but slowly, work towards restoring the original long-term (in this case) warmer equilibrium conditions. Nature has this well under control. Nothing man can do could materially make any difference. Re-equilibration with associated warming may take some time to re-establish itself, but it is not an existential threat to humanity. We cannot fight nature at this scale nor should we. This super-powerful, Sun-Earth thermal equilibrium is successfully re-adjusting, automatically protecting our interests. Man-made global warming plays absolutely no role in this process.

 

This is basic science. High school science classes teach 13 year-olds to understand the origin, nature and power of equilibriums, and how equilibriums adjust to external pressures (Le Chatelier’s Principle). That many in the global scientific community have failed to recognize or address this is concerning and perplexing. One can only presume that these scientists were somehow shockingly unaware of the near 4-billion-year temperature history establishing the existence of this very powerful dynamic thermal equilibrium controlling and regulating the Earth’s climate system.  

 

In re-adjusting to the long-term equilibrium temperature conditions, things may get warmer by as much as 3-5 degrees, sea levels may rise by a few metres at most, and the ice caps may completely melt, as things return to the long-term equilibrium conditions that for this system are normal. The parts of the Earth above 45 degrees latitude will flourish and bloom and regain their full agricultural and economic potential, but the lowest latitudes closer to the equator may become marginally  warmer for some inhabitants, just as the high latitudes are impossibly cold for most now. Low lying island states and continental coastal fringes may become partially inundated (depending on the maximum temperatures). There will be some inevitable collateral damage, depending how far we are from that equilibrium condition, with some winners and losers, but overall the Earth will return to more optimum conditions for life as we know it, that were established over billions of years. Global warming is not triggered or controlled by anything on Earth, but by the overwhelming power of the Sun’s influence on Earth, and that is way beyond our control, but thankfully is controlled by powerful equilibria working in our favour. To attempt to do anything on Earth such as an economically disastrous emissions mitigation policy would achieve absolutely nothing, at horrendous cost globally and create a severe problem where none presently exists. 

 

The above diagram (modified from Michael Allaby 2007), indicates that over about the last 1.8 million years (the Pleistocene glaciation and Holocene interglacial periods), global average temperatures have been averaging around 2-3 degrees above the present global average  of 15 degrees in a series of labelled and numbered warming pulses. The Holocene scale has been greatly expanded showing it to be another warming pulse equivalent to the numbered Pleistocene examples, with the present warming period predictably following on from the Medieval Climate Optimum and the other similar short warming pulses that precede it.


Where the IPCC Scientists and others have gone wrong.

The mistake that most present-day global warming scientists seem to have made is that they believe that the ideal long term mean global temperature for the earth was colder than that at present and that we need to go back to that earlier, lower temperature condition by lowering greenhouse gases that they assume have induced this warming. Instead the evidence suggests that the long-term mean global average temperature was hotter than today and is naturally returning to that earlier warmer condition by itself in a series of short warming pulses in the process of recovering from the relatively recent Pleistocene global glacial event. This seems to be how dynamic thermal equilibria operate. A glance at the climate chart of the last 1.8 million years above suggests that the Earth has experienced up to 15 cycles of short-term warming, exactly the same as we are currently experiencing, and that we may not be that far off reaching the long-term global average warmer condition for the current warming cycle.

The failures of computer modelling

Computer climate modelling has largely been inadequate in for over 30 years in monitoring and predicting climate outcomes, probably  because climate scientists are modelling atmospheric CO2 as the cause of climate change. In modelling the wrong system, inputting irrelevant data, and making inappropriate comparisons and adjusting real world data to fit, it is not surprising that computer predictions from such modelling do not correspond to reality. 

What is needed is new  computer modelling examining the global effect of up to five degrees centigrade average global temperature increases without any input from atmospheric CO2.. Monitoring differing rates of change on average global temperature, on annual atmospheric and ocean temperatures across the globe, the impact of this on growing seasons, the distribution of crops and natural vegetation health and patterns, the amount of ice at the poles, alpine snowfalls, sea-level changes, marine inundations of low-lying coastal areas, new rainfall patterns and distributions, etc etc. Even the effect on atmospheric CO2 levels and coral reef and other marine habitats.

What is needed are  computer-modelled, really long-term  weather forecasts for the next 100, 200, 500 and 1000 years, based on likely rates of global temperature increase seen in past warming cycles  displayed on the Vostok, Greenland, and other ice-core data  (see "CO2 Debate" section of this web site). These need to be tied into realistic historical temperature records and independent of any significant CO2-based greenhouse influences, for which there is very little evidence. 

Coral Reef Science

Barrier reef science needs to be re-examined and verified in the light of concerning revelations highlighted and called into question by the work of Dr Peter Ridd and others. Particularly the history of bleaching events, the effect of climate, and coastal agriculture on the reef, and the politicisation of barrier reef research and funding. It would seem that the problems of the reef are not due to atmospheric CO2 emissions, but also cannot be due to the return to naturally warmer climatic conditions that have not created problems previously during numerous warming cycles in the last several thousand years. If CO2 is not the issue then vast research spending on remediation of atmospheric  CO2 would not be justified (and in fact would be futile and most probably highly counter-productive), as would be the ruinous shutting down of coal mines and the fossil industry. See "The CO2 Debate" in this Web site for a much deeper and revealing discussion of that issue.
 
The Barrier Reef and other reef complexes will do what they have done over millennia, progressively migrate over time to inhabit more optimum environments. In the case of the Great Barrier Reef, this would involve the reef progressively moving southward into SE Queensland waters. The Great Barrier Reef as we presently understand it has a very young history (perhaps less than 10,000 years), building on earlier attempts at coral structures going back a few million years, that have continually migrated to accommodate changing conditions.  

Serious concerns have been raised recently (particularly by Dr Peter Ridd and associates) about the quality and reliability of Barrier Reef research in relation to reef bleaching and regrowth, agricultural chemical and  sediment contamination, and the continued monitoring of the state and general health of the reef. Considering the importance of the reef and the substantial government funding involved, there are some serious quality assurance and quality control issues that have been identified, particularly relating to bleaching, reef regrowth, recovery and politicisation.  


Unseasonably hot weather


All year round, but particularly in spring and summer we are recognizing and becoming concerned about unseasonably warm or hot conditions, droughts, bush fires etc. These are occurring, but in response to the Earth adjusting back to warmer conditions that existed  in the not-too-distant past. The immediate past climate of the last few hundred years has been actually seasonally cooler or colder, but we have got used to it and have come to regard it as being the norm. We need to get used to these changing, warming conditions. They are cyclical and have happened numerous times before in the past several thousand  years. They are normal and natural and not to be feared. We understand why this is happening and we may have to make some adjustments. 


OVER VIEW

We cannot ignore almost 600 million years of the Earth’s history, particularly the last 100 million years & especially the last 2 million years of the Earth's most recent climate history, showing the Earth to been consistently several degrees warmer than today. 


Global warming is happening, but it is not due to CO2 or any other greenhouse gas, nor is it man made, or the result of the burning of fossil fuels. Instead, it is due to the natural warming of the climate as the Earth emerges from the last major Pleistocene glacial cooling event, as the temperature reverts to the naturally warmer conditions that preceded glaciation. Conditions that were as much as 3-5 degrees warmer than at present.  Warming is natural, predictable, and irreversible (at least until the next major cooling event). 


Any massive investment in CO2 mitigation processes will achieve nothing. Arguments  around man-made atmospheric CO2 are discussed in considerably more detail in the next section (see menu), and also display an appalling lack of  quality science from those that should know an awful lot more about  a subject in which they claim considerable expertise. 


Global warming events must inexorably follow the end of every global cooling event (glaciation), & continue until thermal equilibrium is re-established. Why has this obvious explanation for  a major component of the current global warming been ignored?  The dynamic thermal equilibrium solar model is so compelling and its implications so profound that it needs to be more widely circulated, promoted and discussed, particularly within the scientific community.   
 


 

 

SUPPORTING APPENDICES 

A range of additional, relevent background material and explanation is presented in the following section.

Why we have missed the plot.

The Earth is currently emerging from the last ice age. Throughout Earth history, outside of ice ages the Earth is naturally a few degrees warmer. We are currently warming because warmer conditions are the long-term normal climate & the geological climate history shows this has not been due to atmospheric CO2. There is no climate crisis, just restoration of the normal slightly warmer temperature equilibrium. 

Nothing is broken that needs fixing. Forty years of climate models and prophecies don't work because there is no climate problem and CO2 is irrelevant. Climate science insists on fixing and modelling a non-existent climate problem at huge and unnecessary effort and cost. Because there is no problem in the first place, and erroneously insisting on CO2 as a climate driver, means that such modelling is incapable of producing any meaningful representation of reality. 

Like the example of the saga of Lysenko genetics, climate science has created and fallen for its own crank theory, ignoring reality & steamrolling the other sciences into believing. We need to get back to Occam's razor which is to follow the simplest explanation needed to explain the observed phenomena.  This is currently provided by the geological climate record which suggests there is no problem and  nothing is wrong that needs fixing.  The Earth-Sun temperature equilibrium climate system has everything under control. Even if we wanted to, tinkering with the enormity of that system is completely beyond man's control.  


CLIMATE MARKERS , SURROGATES OR PROXIES 

Past climate temperature proxies & indicators 

There are many geological markers & features that indicate particular climatic conditions. These are sometimes referred to as "climate proxies or surrogates". 


1. glacial moraines and outwash gravels (tillites), extensive scoured rock pavements, U-shaped valleys, pyramid-shaped mountains, all indicate major ice events & glaciations


2. thick coal accumulations indicate temperate and tropical conditions


3. coral reefs and shallow marine limestones indicate tropical conditions


4. deserts, desert landforms, red beds, salt lakes, evaporites, calcretes and calcareous soils indicate hot arid conditions


5. certain surface & landscapes effects, laterites and bauxites, and certain soil varieties can be  climate specific 


7. lower sea levels, illustrated by raised beaches, emergent reefs,  regressive  stratigraphy accompany glaciations


8. higher sea levels represented by drowned coastlines (eg Sydney Harbour),  indicate  recent widespread glacial conditions followed by significant melting  & sea-level rise 


9. the fossil record of flora & faunal distributions of climate sensitive species commonly reflect specific climatic conditions as do features such as tree rings

10. The absence of cold climate indicators (or the presence of warm indicators) in areas known to have been high latitude indicate warmer average global temperatures and vice versa. 


11. oxygen isotope (18 O /16 O) studies give us a more exact numerical handle on past temperatures and are very sensitive to average seawater temperatures. Since 18 O is the heavier isotope it is harder to evaporate than the lighter 16 O isotope.  18 O becomes enriched in colder water and this evidence is preserved in oxygen isotopes (derived from that water) preserved in shells of particularly micro fossils reflecting water temperatures. The ratio sourced from a range of materials is linked to water temperature of ancient oceans, reflecting  ancient climates.

Some past climate generalizations

In general the Mesozoic was significantly warmer than today, especially in the Mid Cretaceous, about 100 million years ago, with isotopic data suggesting water temperature 10-15 degrees C warmer. Average surface land temperatures were about 8 degrees warmer and the temperature contrast between the equator and poles was much lower.  Higher temperatures prevailed at all latitudes.   The Early Cenozoic oxygen isotopes indicate about 3 degrees warmer condition than today. The data then indicates rapid cooling and a prolonged cold period between 58-35 million years, forming glacial ice in Antarctica.  The onset of mountain glaciation in the northern hemisphere began about 10 million years ago and the onset of recent ice age advances and retreats in the northern hemisphere began about 1.6 million years ago. The most recent glacial retreat was some 10,000 years ago marking the beginning of the Holocene Epoch. Further ice advances are likely in the near future.


Much of this data has been available for many years. The modified chart below dates from Frakes, L.A. (1979), Climate through Geological Time, Elsevier, and shows a remarkable similarity to more recent charts and also depicts Mean Global Precipitation data over the whole of Earth history. The same climate inferences relating to the causes of current day warming could have just as easily been identified 40 years ago. That this was not done far earlier is a cause for serious concern.

In the chart below (modified by the present author, from Kent C. Condie 1997), the time axis has been arranged vertically. The second chart below featuring temperatures by Scotese (2002),  shows both median global temperature and and atmospheric CO2 (Pagani 2005), and their mutual relationships, across the entire geological time scale up to the present. The Frakes (1979) original, although now somewhat dated is still largely relevant and this modified and updated version is included for completeness. 

 

The five charts above  are broadly similar overall in terms of the climate history displayed, the main departures being the use of variable timescales and the addition of more recent data. Data sources are listed with these charts. 

Bushfires

Bush fires are  perennial events in Australia's bushland in summer, as in many parts of the world and are not exclusively recent events related to present climate conditions wherever they occur.  Continuing warming is likely to extend fire seasons at both ends of the season.  The sclerophyll forests of southern Australia are not just adapted to fire, they are reliant on it and so to the wildlife. Greater areas were burned in 1851 and 1974-75, and human devastation was as bad or worse on Black Saturday in 2009, Ash Wednesday in 1983, Black Tuesday in 1967, Black Friday in 1939 and Black Thursday 1851. 


Even fires in rain forest areas of southern Queensland and northern NSW are not “unprecedented”, with archived reports recording similar fires in the spring of 1951 and even the winter of 1946. 

Warm dry conditions favour fires, but so do high fuel loads, heavy undergrowth densities and lack of undergrowth clearing,  the frequency and intensity of past burning events, and forest and bush management practices. 

We must avoid the temptation of making out recent bush fire and other events to be far worse than they are and forget or ignore the lessons of history.  The tendency to restrict fire events to relatively recent fire records often distort bushfire trends, by omitting very major fires dating back into the 1800's reported in detail in newspapers and forestry records of the time.


                Past climate atmospheric CO2  proxies & indicators 

Various proxy measurements have been used to attempt to determine atmospheric carbon dioxide concentrations millions of years in the past. These include boron and carbon isotope ratios in certain types of marine sediments, and the number of stomata observed on fossil plant leaves. Phytane, a breakdown product of chlorophyll is now used to estimate ancient CO2 levels and gives a continuous record of CO2 concentrations.

Atmospheric CO2 levels and coexisting ocean levels can be correlated, so that the relative abundance of CO2 incorporated into carbonate rocks and minerals over time is a reflection of atmospheric CO2 levels, but must be countered by ocean temperatures at the time and location. 

There is evidence for high CO2 concentrations between 200 and 150 million years ago of over 3,000 ppm, and between 600 and 400 million years ago of over 6,000 ppm. In more recent times, atmospheric CO2 concentration continued to fall after about 60 million years ago. About 34 million years ago, the time of the Eocene–Oligocene extinction event and when the Antarctic ice sheet started to take its current form, CO2 was about 760 ppm, and there is geochemical evidence that concentrations were less than 300 ppm by about 20 million years ago. Decreasing CO2 concentration, with a tipping point of 600 ppm, is considered by some to be the primary agent forcing Antarctic glaciation.  Low CO2 concentrations may have been the stimulus that favored the evolution of C4 plants (those with larger stoma), which increased greatly in abundance between 7 and 5 million years ago.
 

ICE AGES

As can be seen on the Earth's climate charts, there have been a number of short global glacial events representing significant lowering of the Earth's surface temperatures. Calculations indicate that a drop of only 2-3  degrees centigrade is enough to precipitate an ice age.

The causes of this are several and the durations, although generally short, are variable:

1) Changes in the Sun's activity and thermal output. The constancy of mean  global temperatures over truly vast periods of geological time suggest that this is unlikely. 
 
2) Glaciations accompanying regular cyclical changes in planetary orbits etc such as with Milankovitch-cycle activity due to changes in the earth's orbit, tilt and axial wobble. 

3) Major periods of explosive volcanic ash eruptions effectively darkening the sky and atmosphere  for long periods with fine ash, or volcanic or other gaseous discharges effecting solar energy absorption and reflection.

4). Changes in continental tectonic drift configurations, the size and location and breakup of large continents, periods of mountain building, blocking or redirecting ocean and atmospheric currents  (for example such as would accompany the blocking or redirection of the warm waters of the Gulf Stream reaching the North Atlantic).

New York under ice,  Brown and Morgan (1991), from the television series ""The Miracle Planet"". 

GLOBAL CLIMATE HISTORY AND THE EVOLUTION OF HUMAN KIND

Atmospheric CO2, and major events in the evolution of life over the last 500 million years, including into the ascent of man, are illustrated below. Atmospheric CO2 has been progressively diminishing over time at the rate of about 2 ppm CO2/million years, largely going into limestone. But the single most dramatic decline occurred from about 350-200 my (Carboniferous, Permian & Triassic), corresponding to the major explosion of land plants and the accumulation of nearly all the major coal deposits of the world dating from this period.   

The most primitive and early hominoids go back about one million years, with the earliest homo sapiens appearing around 200 - 250,000 years ago. The second chart below shows the progression of hominoid forms from about one million years, correlated with the  climate record from ice core data going back to about 800,000 years.  Hominoid forms leading to present-day homo sapiens seem to have coped well with  periodic climate and atmospheric CO2 variations and  all hominoid forms survived the significant cyclical disruptions well, but probably performed and survived best in the warmer climatic latitudes and episodes.  Humans could not survive outside very warm latitudes without the technological developments of food management, shelter, clothing, and fire.  

A very useful summary diagram of a lot of important climate & atmospheric information across the last 600 million years of geological time,  (note the time scale is variable).  

A Critique of the Peer Review Process and the Role of Sceptics in Science


One of the claims often cited by scientists and others to advance the credibility of their research and conclusions is to claim “Peer Review” as a badge of merit, validity, or endorsement, somehow establishing a superior credibility for their work. Peer review is where a scientific paper is sent off by a publisher to be reviewed by one or more ''experts in the field", supposedly to check the veracity of the data, methods, analysis and conclusions prior to publication.  The Peer Review system when it works well is a useful gate keeper, but we need to appreciated it's limitations and it's potential for misuse. We also need to be aware that a lot of bad science gets through the peer review process and gets published, and that very good science does not need peer review to be very good science. 

 
A common response from pro-warmists is the demand for "peer review" of any claims, data or evidence. This is used more to try and shut down counter claims and as a weak but convenient shield so as to avoid having to respond to any embarrassing alternative claims. The point here seems to be to shut down debate rather than encourage it. This is not in the spirit of peer review.  The fact that something may have been "peer reviewed" gives it very little extra credibility. Many scientific journals feature peer reviewed articles, but that is no guarantee that the claims are beyond criticism or will stand the test of time, (most don't). All scientific assertions must stand on their own merits, if made by a single individual or endorsed by thousands. 


The value and integrity of the peer review process is often questionable and may be seriously flawed, influenced by personal bias, peer pressure, cherry picking favourable data, suppressing unfavourable data, and self-serving, sloppy thinking and analysis, and at the worst fraud and misconduct. On top of that reviewers often do a very cursory or inadequate job. That the majority of published scientific, peer reviewed material is later discredited, or contradicted by other work over time, as our knowledge and understanding expands, is well understood.   It is not uncommon for follow-up of  published peer reviewed work to fail to be able to reproduce tests and results, which casts some doubt on the value of the peer review process. The recent publication of numbers of completely bogus papers submitted by sham authors in peer reviewed journals to expose some of these weaknesses, casts even more doubt on the credibility of the peer review system.

The most serious criticism of the value of peer-review is demonstrated in the fact that most peer reviewed science is later proved incorrect, superseded, or radically revised.  Peer review is no guarantee of quality. At best it provides a check by one or two other scientists familiar with the content that there are no obvious errors or omission's and it is in general agreement or adds to current scientific knowledge.     

That seeming intelligent people can dismiss or ignore non-peer reviewed scientific knowledge & are prepared to be party to only part of the scientific information available is incredible & alarming. In most debates with hard-line global warming alarmists,  the lack of peer review is used as the first line of defence, an excuse to avoid answering difficult questions or critical review. The lack of peer review does not mean that non-peer reviewed articles are in any way deficient. By restricting yourself to only peer reviewed material means you are not getting all the science that is available. That’s bad science.

For a more detailed examination/criticism of the peer review process click the following web link:

             https://medium.com/@devonprice/peer-review-is-not-scientific-bf3283069ffd  


The role of sceptics in science

Basic science is built on scepticism. Every new idea is generated by a septic doubting and then discarding the existing wisdom in the search for a better solution, superior insight, or more elegant explanation. The science is never settled because we continually search, test, probe and re-analyse. Sceptics exist because there is a lot to be sceptical about. The history of science is replete with the corpses of discarded and discredited theories, and reputations. We learn from the mistakes of others. Sceptics keep the science honest, bringing to our attention areas of concern or weakness in our evidence or arguments that tend to get glossed over in science's  enthusiasm for the big picture. It is the emperor has no cloths phenomena. Scientists sometimes become so bound up in an overwhelming belief in an imaginative idea that they have put a lot of energy and intellectual investment into, that they don't check where and as well as they should all the less attractive alternatives, and can't see the trees for the forest.  "Settled science" is a tautology, There may be a strong consensus or overwhelming majority view in politics, but there is only one truth in science - even if no one believes or accepts it. 

If we believe we know everything then we cannot learn anything.


Dr Robert Fagan

Geologist, Geochemist  & Climate Critic .   

 

Activate the web page menu (top of screen), to access additional major sections of this document.